UC Berkeley, Physics 89 Mathematical Methods in Physics, Spring 2017 Syllabus (Updated: 4/2)

Week	Tonics	Notes
Week 1	Introduction.	No Class on Monday, 1/16
1/16 - 1/20	Taylor Expansions and Approximations	No Discussion Sections this week.
	Complex Numbers and the Complex Plane	
Week 2	Introduction to Vectors and Vector Spaces	Discussion Sections start
1/23 - 1/27	Vector Spaces	Discussion Sections start.
	Linear Independence Span and Bases	
	"Direction" of a Vector	
Week 3	"Magnitude" of a Vector The Inner Product	
1/30 - 2/3	The Gram-Schmidt Procedure	
	Introduction to Matrices	
	Matrix Multiplication	
Week 1	Linear Systems of Equations as Matrix Equations	
$\frac{2}{6} \frac{2}{10}$	Row Reduction (Gauss Jordan)	
2/0 - 2/10	Existence and Uniqueness of Solutions	
	Existance and Uniqueness of Solutions	
Week 5	Classifications and Manipulations of Matrices	
2/13 - 2/17	Droportion of Matrices (the trace, determinent)	
	Cremen's Dula for Solving Systems of Linger Equations	
	Cramer's Kule for Solving Systems of Linear Equations	
W 1 C	I ne wronskian	
	Here Enas Material for Miaterm 1	No Class on Monday, 2/20
2/20 - 2/24	The Matrix Inverse	
	Computing Inverses with Row Reduction	
XV 1 7	The Eigenvalue Problem	
Week /	Quadratic Forms	Midterm 1 - Monday, 2/27
2/27 - 3/3	Finding Eigenvalues and Eigenvectors	• •
	Eigenvalue/Eigenvector Theorems and Properties	
W 1.0	Changes of Basis	
Week 8	Similarity Transformations	
3/6 - 3/10	Active Transformations	
	Diagonalization	
W 1.0	Introduction to Tensors	
Week 9	what is a Tensor?	
3/13 - 3/1/	I ensors by Analogy - Scalars, Vectors, Matrices	
-	How Tensors Transform	
W/ 1 10	The Tensor Product	
Week 10	Contraction	
3/20 - 3/24	Denas, Epsilons, Dois, and Crosses	
	Here Enas Material for Materia 2	
-	No Class - Spring Break	
XX7 1 11	Introduction to Differential Equations	
Week 11	Classifying Differential Equations	
4/3 - 4/7	Linear Ordinary Differential Equations	
-	Solution Techniques for First-Order Linear ODEs	
Week 12	Solution Techniques for Higher-Order Linear ODEs	
4/10 - 4/14	Fourier Series	Midterm 2 - Monday, 4/10
	The Fourier Transform	
Week 13	Partial Differential Equations	
4/17 - 4/21	Separation of Variables	
	• Physical System - The wave Equation •	
Week 14	Asymptotic solutions and series solutions	
4/24 - 4/28	Special Functions: Bessel, Hermite, Legendre	
5/1 - 5/5	Reading/Review/Recitation Week	
Finals Week	Final Exam (Exam Group 7)	
5/8 - 5/12	Tuesday, May 9	
5/0 - 5/12	3:00pm - 6:00pm	

This syllabus is subject to minor changes. Please pay attention to any announcements online or in lecture.