UC Berkeley, Physics 89
Mathematical Methods in Physics, Spring 2017
Syllabus (Updated: 4/2)

Week	Topics	Notes
Week 1 1/16-1/20	Introduction. Taylor Expansions and Approximations	No Class on Monday, 1/16 No Discussion Sections this week.
Week 2 $1 / 23-1 / 27$	Complex Numbers and the Complex Plane Introduction to Vectors and Vector Spaces Vector Spaces	Discussion Sections start.
$\begin{aligned} & \text { Week } 3 \\ & 1 / 30-2 / 3 \end{aligned}$	Linear Independence, Span, and Bases "Direction" of a Vector "Magnitude" of a Vector - The Inner Product The Gram-Schmidt Procedure Introduction to Matrices	
Week 4 $2 / 6-2 / 10$	Matrix Multiplication Linear Systems of Equations as Matrix Equations Row Reduction (Gauss-Jordan) Existance and Uniqueness of Solutions	
$\begin{aligned} & \text { Week } 5 \\ & 2 / 13-2 / 17 \end{aligned}$	Images, Kernels, Ranks, and Nullities Classifications and Manipulations of Matrices Properties of Matrices (the trace, determinant)	
$\begin{aligned} & \text { Week } 6 \\ & 2 / 20-2 / 24 \end{aligned}$	Cramer's Rule for Solving Systems of Linear Equations The Wronskian -----Here Ends Material for Midterm 1----- The Matrix Inverse Computing Inverses with Row Reduction Computing Inverses with Determinants	No Class on Monday, 2/20
$\begin{aligned} & \text { Week } 7 \\ & 2 / 27-3 / 3 \end{aligned}$	The Eigenvalue Problem Quadratic Forms Finding Eigenvalues and Eigenvectors Eigenvalue/Eigenvector Theorems and Properties	Midterm 1 - Monday, 2/27
Week 8 $3 / 6-3 / 10$	Changes of Basis Similarity Transformations Active Transformations Diagonalization	
Week 9 $3 / 13-3 / 17$	Introduction to Tensors What is a Tensor? Tensors by Analogy - Scalars, Vectors, Matrices How Tensors Transform	
$\begin{aligned} & \text { Week } 10 \\ & 3 / 20-3 / 24 \end{aligned}$	The Tensor Product Contraction Deltas, Epsilons, Dots, and Crosses -----Here Ends Material for Midterm 2 \qquad	
	No Class - Spring Break	
$\begin{aligned} & \text { Week } 11 \\ & 4 / 3-4 / 7 \end{aligned}$	Introduction to Differential Equations Classifying Differential Equations Linear Ordinary Differential Equations Solution Techniques for First-Order Linear ODEs	
$\begin{aligned} & \text { Week } 12 \\ & 4 / 10-4 / 14 \end{aligned}$	Solution Techniques for Higher-Order Linear ODEs Fourier Series The Fourier Transform	Midterm 2 - Monday, 4/10
Week 13 $4 / 17-4 / 21$	Partial Differential Equations Separation of Variables - Physical System - The Wave Equation •	
Week 14 $4 / 24-4 / 28$	Asymptotic solutions and series solutions Special Functions: Bessel, Hermite, Legendre	
5/1-5/5	Reading/Review/Recitation Week	
Finals Week $5 / 8-5 / 12$	Final Exam (Exam Group 7) Tuesday, May 9 3:00pm - 6:00pm	

This syllabus is subject to minor changes. Please pay attention to any announcements online or in lecture.

