Physics 137A - Quantum Mechanics - Spring 2018 Reading Assignments
 Last updated: 1/16

The following is a listing of the readings for the course. Please try to read these sections before class on that given week. Don't worry if you don't understand the readings fully on your first pass! After the lecture on a given topic it is worthwhile to go back and reread the relevant sections.

Note that ' G ' refers to Griffiths and ' S ' refers to Shankar (which is available as an electronic resource through the UC Berkeley Library at http://link.springer. com/book/10.1007\%2F978-1-4757-0576-8).

Week 1	1/15-1/19	G: 1.2, 1.3, 1.4 S: Chapter 3	The Wave Function The Statistical Interpretation
Week 2	1/22-1/26	$G: 1.1,1.5,1.6$	Expectation Values and Operators; Dispersion Measurement; Time Dependence
Week 3	1/29-2/2	G: 2.1, 2.2, 2.5	Stationary States; The Infinite Square Well Orthonormal Bases; The Free Particle The Fourier Transform
Week 4	2/5-2/9	G: 2.5, 2.6	Bound States and Scattering States The Finite Square Well
Week 5	2/12-2/16	G: 8.1, ${ }^{1}$ 8.2, ${ }^{1} 2.3{ }^{2}$	Sketching Wave Functions The Simple Hamonic Oscillator
Week 6	2/19-2/23	$\begin{aligned} & \hline \hline G: A .1,3.1 \\ & S: 1.1,1.3 \end{aligned}$	The Double-Finite Well Toy Model ${ }^{3}$ The Hilbert Space; Kets; Bras
Week 7	2/26-3/2	$\begin{aligned} & G: A .2, A .3, A .5, A .6,3.2 \\ & S: 1.2,1.3,1.4,1.5,1.6,1.8 \end{aligned}$	Inner Products; Operators Observables; The Eigenvalue Equation
Week 8	$3 / 5-3 / 9$	$\begin{aligned} & G: 3.3,3.4,3.5 .3 \\ & S: 1.9,1.10,4.1,4.2,4.3 \end{aligned}$	Observables; Eigenbases Projection Operators; Time-Dependence
Week 9	3/12-3/16	$\begin{aligned} & G: A .4,2.3,3.5 \\ & S: 1.7,7.1,7.4,9.2,11.4 \end{aligned}$	Active and Passive Transformations The Simple Harmonic Oscillator The Uncertainty Principle
Week 10	$3 / 19-3 / 23$	$\begin{aligned} & G: 4.1 .1,4.1 .2 \\ & S: 10.1,10.2 \end{aligned}$	Multiple Degrees of Freedom; 3D Particle in a Box Separation of Variables in Spherical Coordinates The Angular Equation
Week 11	4/2-4/6	$\begin{aligned} & G: 4.1 .3,4.2 \\ & S: 12.6,13.1,13.2 \end{aligned}$	Spherical Harmonics; The Radial Equation Particle in a Spherical Box; Hydrogen
Week 12	4/9-4/13	$\begin{aligned} & G: 4.2,4.3 \\ & S: 12.2,12.3,12.4,12.5 \end{aligned}$	Hydrogen; Angular Momentum Eigenstates Angular Momentum Eigenfunctions
Week 13	4/16-4/20	G: 4.4.1, 4.4.2 S: Chapter 14	Spin Angular Momentum; Spin in a Magnetic Field The Stern-Gerlach Experiment
Week 14	4/23-4/27	G: 4.4.3 $S: 15.1,15.2$	Addition of Angular Momentum The Clebsch-Gordan Coefficients
RRR	$4 / 30^{4}$	$G: 12.1,12.2,12.4$	Schrödinger's Cat; Entanglement and EPR The Bell Inequalities

[^0]
[^0]: ${ }^{1}$ We will just concerned with the qualitative aspects of Sections 8.1 and 8.2 that let us draw wave functions.
 ${ }^{2}$ Skip Section 2.3.1 for now. We will return to it at the end of the formalism section!
 ${ }^{3}$ I couldn't find a good source for the double-well model the way we introduce and use it in class. My notes are fairly detailed on it, though, and you can explore it using the "Bound States" applet: https://www.physport.org/examples/quilts/possible-wavefunction/ bound-states_en.jar.
 ${ }^{4}$ On Monday of RRR week at our usual class time I will hold a "just for fun" lecture (you are not responsible for any of these materials) to explore these topics!

