Physics 137A - Quantum Mechanics - Spring 2018 Reading Assignments Last updated: 1/16

The following is a listing of the readings for the course. Please try to read these sections *before* class on that given week. Don't worry if you don't *understand* the readings fully on your first pass! After the lecture on a given topic it is worthwhile to go back and *reread* the relevant sections.

Note that 'G' refers to Griffiths and 'S' refers to Shankar (which is available as an electronic resource through the UC Berkeley Library at http://link.springer.com/book/10.1007%2F978-1-4757-0576-8).

Week 1	1/15 1/10	G: 1.2, 1.3, 1.4	The Wave Function
WEEK I	1/10 - 1/19	S: Chapter 3	The Statistical Interpretation
Week 2	1/22 - 1/26	G: 1.1, 1.5, 1.6	Expectation Values and Operators; Dispersion
			Measurement; Time Dependence
			Stationary States; The Infinite Square Well
Week 3	1/29 - 2/2	G: 2.1, 2.2, 2.5	Orthonormal Bases; The Free Particle
			The Fourier Transform
Wook 4	2/5 2/0	$C \cdot 95 96$	Bound States and Scattering States
Week 4	2/3-2/9	G. 2.0, 2.0	The Finite Square Well
Week 5	2/12 - 2/16	$G: 8.1, 1 8.2, 1 2.3^2$	Sketching Wave Functions
			The Simple Hamonic Oscillator
Week 6	2/19 - 2/23	G: A.1, 3.1	The Double-Finite Well Toy Model ³
		S: 1.1, 1.3	The Hilbert Space; Kets; Bras
Week 7	2/26 - 3/2	G: A.2, A.3, A.5, A.6, 3.2	Inner Products; Operators
		S: 1.2, 1.3, 1.4, 1.5, 1.6, 1.8	Observables; The Eigenvalue Equation
Week 8	3/5 - 3/9	G: 3.3, 3.4, 3.5.3	Observables; Eigenbases
		S: 1.9, 1.10, 4.1, 4.2, 4.3	Projection Operators; Time-Dependence
Week 9	3/12 - 3/16	G: A.4, 2.3, 3.5 S: 17 71 71 0 2 11 1	Active and Passive Transformations
			The Simple Harmonic Oscillator
		5. 1.7, 1.1, 1.4, 5.2, 11.4	The Uncertainty Principle
		Q 1 1 1 1 1 0	Multiple Degrees of Freedom; 3D Particle in a Box
Week 10	3/19 - 3/23	G: 4.1.1, 4.1.2	Separation of Variables in Spherical Coordinates
		5. 10.1, 10.2	The Angular Equation
Week 11	4/2 - 4/6	G: 4.1.3, 4.2	Spherical Harmonics; The Radial Equation
		S: 12.6, 13.1, 13.2	Particle in a Spherical Box; Hydrogen
Week 12	4/9 - 4/13	G: 4.2, 4.3	Hydrogen; Angular Momentum Eigenstates
		S: 12.2, 12.3, 12.4, 12.5	Angular Momentum Eigenfunctions
Week 13	4/16 - 4/20	G: 4.4.1, 4.4.2	Spin Angular Momentum; Spin in a Magnetic Field
		S: Chapter 14	The Stern-Gerlach Experiment
Week 14	4/23 - 4/27	G: 4.4.3	Addition of Angular Momentum
		S: 15.1, 15.2	The Clebsch-Gordan Coefficients
RRR	$4/30^4$	G: 12.1, 12.2, 12.4	Schrödinger's Cat; Entanglement and EPR
			The Bell Inequalities

 $^{^{1}}$ We will just concerned with the qualitative aspects of Sections 8.1 and 8.2 that let us draw wave functions.

 $^{^{2}}$ Skip Section 2.3.1 for now. We will return to it at the end of the formalism section!

³I couldn't find a good source for the double-well model the way we introduce and use it in class. My notes are fairly detailed on it, though, and you can explore it using the "Bound States" applet: https://www.physport.org/examples/quilts/possible-wavefunction/bound-states_en.jar.

 $^{^{4}}$ On Monday of RRR week at our usual class time I will hold a "just for fun" lecture (you are *not* responsible for any of these materials) to explore these topics!