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UC Berkeley - Physics 5CL 
STATISTICS REFERENCE SHEET 

A Note on Notation 
One of the common frustrations as a physicist (or a mathematician) is that everyone has their own favorite notations 
and conventions.  Your author is no exception, unfortunately.  I will, however, tell you what my notational conventions 
mean!  This mainly applies to the statistical analyses that we will run.  A supplement on data analysis using my 
notation is available. 

• When referencing an arbitrary individual data point I will use a lowercase subscript (usually an i) to indicate the 
index.  Example: The ith measurement of a position variable x is written xi. 

• Curly braces indicate the set of measurements.  Example: The set of position measurements is written {xi}. 

• The mean of a variable is indicated with triangular brackets.  Example: The mean of the position data {xi} is 
written áxñ. 

o Another commonly used notation is to use an overbar, x̅, though I will not be using this notation in these 
notes.  The reason I use the bracket notation is that it is easier (for me at least) to distinguish áx2ñ from áxñ2 
than it is to distinguish 𝑥" from 𝑥".  Similarly, it is easier for me to distinguish áxyñ from áxñáyñ that it is to 
distinguish  𝑥𝑦 from 𝑥𝑦. 

• Individual sources of error or uncertainty will be labeled with capital deltas in front of the symbol and a subscript 
indicating the source of error.  Example: The reading uncertainty for position measurements x is written Δxread.  
This error applies for all data points xi so subscript may be omitted.  However, the observational uncertainty 
differs from measurement to measurement so I will write observational uncertainties as Δxobs,i. 

• The total uncertainty in a quantity will be labeled with a lowercase delta in front of the symbol.  Example: The 
total uncertainty in a position measurement xi is written δxi. 

• Standard deviations will be written as a lowercase sigma with a subscript indicating the variable.  Example: The 
standard deviation of a set of position measurements {xi} is written σx. 

• Covariances will be written as a lowercase sigma with two subscripts, indicating the two variables under 
consideration.  Example:  The covariance of a data set {xi, yi} is written σxy.  Note that with this notation the 
variance of the single variable x is σxx and thus the standard deviation is σx ≡ 𝜎%%. 

• Best-fit parameter values will be written with a hat.  Example: If we are fitting data {xi, yi} with a linear regression 
hypothesis y = mx then the best-fit value for the slope is written m̂. 

 

SECTION 1:  STATISTICAL MEASURES FOR A SINGLE VARIABLE {yi} 

Mean: 𝑦 =
1
𝑁

𝑦)

*

)+,

. (1.1) 

Deviation from the Mean: 𝜀) 	= 	 𝑦)	– 	 𝑦 . (1.2) 

Variance: 𝜎11 = 𝜀" =
1
𝑁

𝑦) − 𝑦 "
*

)+,

= 𝑦" − 𝑦 ". (1.3) 

Standard Deviation (Population): 𝜎1 = 𝜎11 = 𝑦" − 𝑦 ". (1.4a) 
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Standard Deviation (Sample): 𝜎1 =
*
*3,		𝜎1 =

1
𝑁 − 1

𝜀)". (1.4b) 

Standard Error: 𝜎 1 = 𝜎1/ 𝑁. (1.5) 

 

The difference between population and sample statistics only becomes significant if the number of data points is low.  
If you have roughly 5 or more data points you can pretty safely ignore the distinction. 

The standard deviation represents the uncertainty of a single measurement and the standard error represents the 
uncertainty in the mean of multiple measurements.  

Example1:  If I measure the spring constant k of a spring a number of times to get data {ki} I would report the result 
as k = ákñ ± σákñ.  Given ten measurements (in N/m) {ki} = {86, 85, 84, 89, 85, 89, 87, 85, 82, 85} the final answer 
would be presented as k = 85.7 ± 0.7 N/m.  The standard deviation is σk = 2.2 N/m.  If I were to perform the same 
experiment once on a different spring, finding a value of k = 71 N/m then I would report k = 71 ± 2 N/m and I would 
have roughly 68% confidence that the true spring constant was within 2 N/m of 71 N/m.   

 

SECTION 2:  STATISTICAL MEASURES FOR TWO VARIABLES {xi, yi} 

Covariance: 𝜎%1 =
1
𝑁

𝑥) − 𝑥 𝑦) − 𝑦
*

)+,

= 𝑥𝑦 − 𝑥 𝑦 . (2.1) 

Coefficient of Linear Correlation: 𝑟%1 =
𝜎%1
𝜎%𝜎1

. (2.2) 

 
The covariance roughly tells you how much x and y change together.  If larger yi values tend to be paired with  greater 
xi values, then the covariance is positive.  If larger yi values tend to be paired with smaller xi values, then the covariance 
is negative.  The more linear the relationship is between x and y the larger the covariance will be.  The units of 
covariance are the units of x times the units of y. 

Note that the variance of a variable is just the covariance of a variable with itself (compare Eqs. 1.3 and 2.1). 

The coefficient of linear correlation tells you how linear the relationship between x and y is.   The correlation rxy will 
always lie between -1 and 1.  The closer |rxy| is to 1 the stronger the linear relationship is between x and y.  The sign 
of rxy gives the sign of the slope. 
 
 

 
Figure 1: Various data sets and their correlations.2 

                                                
1 This example is presented in Taylor, An Introduction to Error Analysis, Chapter 4. 
2 http://en.wikipedia.org/wiki/Correlation_and_dependence 
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SECTION 3:  SOURCES OF ERROR AND UNCERTAINTY 
Every measurement or piece of data comes with its own uncertainty - we never know the result of a measurement 
exactly.  There are many possible sources of uncertainty in any given measurement.  An individual source of 
uncertainty will be labeled with a capital delta and a subscript for the source.  

• Reading Uncertainty - An uncertainty that is due to the finite resolution of our instruments. The reading 
uncertainty Δyread is plus-or-minus one-half the resolution of the measurement.  

• Random Uncertainty - An uncertainty that is due to random fluctuations in our instruments or readings (very 
common with digital instruments).  In a random fluctuation, your readings will bounce around, but will typically 
be bounded by some high reading and some low reading.  The central value of this measurement ycent is the average 
of the high and low readings and the random uncertainty Δyrand is half the difference between the high and low 
value.  The expression “ycent ± Δyrand” thus contains the entire interval of observed values and is the result that 
should be reported. 

• Observational Uncertainty - Uncertainties due to judgment calls made during an observation.  You can estimate 
the size of your observational uncertainty by average the bounds of your judgement to create a central value and 
take half the difference between the bounds to create the error. 

• Counting Uncertainty - When dealing with occurrence counts of a random process (such as the decay of a 
radioisotope) there is an inherent statistical counting uncertainty that grows as the square root of your count.  That 
is, given a count of N the counting uncertainty is 𝛥𝑁count = 𝑁.  

• Instrumental Error - Perhaps the instrument was poorly calibrated (a thermometer reading the freezing point of 
water in standard atmospheric pressure as 2°C and the boiling point as 102°C). 

• Environmental Error - Perhaps there was a power surge or a mild tremor that causing readings to go awry.   

• Theoretical Error - Due to the models or approximations used in your assumptions.  For example, modeling a 
pendulum as a perfect simple harmonic oscillator ignores the deviations that occur when the amplitude of 
oscillation is large.  Such deviations at large amplitudes contribute to the theoretical error. 

• Blunders - There is no fixing this, really.  These are just mistakes!  Maybe you recorded the wrong value or fell 
asleep and missed some readings or used the wrong units. 

 

The Total Uncertainty 

The total uncertainty in a measurement is written with a lowercase delta, δy.  A measurement should always be 
recorded with the central value along with the uncertainty.  If the central value is y and the total uncertainty is δy then 
the reported measurement would be written “y ± δy”, with units placed at the end of the expression.  Example:  If I 
measure a position of 31.0 cm with a ruler (with a resolution of 2 mm) and find and the reading error were the only 
source of error or uncertainty I would report the result as 31.0 ± 0.2 mm. 

We assume that all sources of error and uncertainty discussed above are independent and therefore the total uncertainty 
is found by adding the individual errors in quadrature, 

𝛿𝑦 = Δ𝑦," + Δ𝑦"" + ⋯. (3.1) 

For a quick estimate of the total uncertainty, note that δy will always be larger than the largest individual source of 
uncertainty (call this Δy1) and smaller than the sum of all the sources of uncertainty, 𝛥𝑦, ≤ 𝛿𝑦 ≤ ∑𝛥𝑦). 

 

Relevant and Irrelevant Sources of Error and Uncertainty 

There will always be many sources of error and uncertainty for any measurement or calculation.  When computing the 
total uncertainty we can safely ignore some sources of error as long as they don’t appreciably change the calculation 
of the total uncertainty.  (Your tolerance for what is an appreciable change is of course subjective, though).  The 
relevance of any individual source of uncertainty for a measurement is based on the largest source of uncertainty for 



 4 

that measurement.  For example, consider the following table showing possible reading and observational uncertainties 
for a position measurement of y = 2.050 m: 

Trial y (m) Δyread (m) Δyobs (m) δy (m) Deviation from  
largest uncertainty. 

1 2.050 0.010 0.200 0.20025 0.13% 

2 2.050 0.010 0.020 0.02236 11.80% 

3 2.050 0.010 0.002 0.01020 2.00% 

If a given source of uncertainty is roughly an order of magnitude smaller than the largest source of uncertainty then 
its effects get drowned out, as seen in Trial 1 - where the total uncertainty is only 0.13% larger than the observational 
uncertainty - and in Trial 3 - where the total uncertainty is only 2.00% larger than the reading uncertainty.  When a 
given source of uncertainty is of the same order of magnitude as the largest source of uncertainty as in Trial 2 then we 
need to take both sources of uncertainty into account. 

 

SECTION 4:  PROPAGATION OF UNCERTAINTY3 
When using a measured quantity (with uncertainty) to compute a new quantity, we need to take care to propagate the 
uncertainty. 
 
Propagation of Uncertainty for a Function of a Single Variable 

Consider a single variable x and a derived quantity q that can be expressed as a function of x.  That is, given a 
measurement xi, the derived value of q for that data point is qi = q(xi).  Given an uncertainty δxi in the measurement of 
xi the propagated uncertainty for qi is given by 

𝛿𝑞) = 𝑞′(𝑥)) 𝛿𝑥), (4.1) 

where 𝑞F 𝑥 ≡ 𝑑𝑞/𝑑𝑥.  Some of the more commonly occuring examples are given below. 

Multiplication by a Constant: 𝑞 𝑥 = 𝑐𝑥 𝛿𝑞 = 𝑐 𝛿𝑥. (4.2) 

Power: 𝑞 𝑥 = 𝑥J 
𝛿𝑞
𝑞
= 𝑛

𝛿𝑥
𝑥
. (4.3) 

Exponential: 𝑞 𝑥 = 𝑒% 
𝛿𝑞
𝑞
= 𝛿𝑥. (4.4) 

Logarithm: 𝑞 𝑥 = ln 𝑥 𝛿𝑞 =
𝛿𝑥
𝑥

 (4.5) 

 

Propagation of Uncertainty for a Function of Several Variables 

Two variables x and y may be considered independent if their covariance is zero, rxy = 0.  Consider two independent 
variables x and y and a derived quantity q that can be expressed as a function of both x and y.  That is, given a 
measurement {xi, yi|, the derived value of q for that data point is qi = q(xi,yi).  Given uncertainties δxi and δyi, the the 
propagated uncertainty for qi is given by 

                                                
3 For a more thorough discussion see Taylor, An Introduction to Error Analysis, Chapter 3. 
. 
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𝛿𝑞) =
𝜕𝑞
𝜕𝑥
𝛿𝑥)

"

+
𝜕𝑞
𝜕𝑦

𝛿𝑦)
"

, (4.6) 

where the partial derivatives are understood to be evaluated at {xi,yi}.  This generalizes to functions of more than two 
variables in a straightforward manner.  Some of the more commonly occuring examples are given below. 

Sum or Difference: 𝑞 𝑥, 𝑦 = 𝑥 + 𝑦 𝛿𝑞 = 𝛿𝑥 " + 𝛿𝑦 ". (4.7) 

Product or Quotient: 𝑞 𝑥, 𝑦 = 𝑥𝑦		or		
𝑥
𝑦

 𝛿𝑞
𝑞
=

𝛿𝑥
𝑥

"

+
𝛿𝑦
𝑦

"

. (4.8) 

If variables x and y aren’t independent then the actual uncertainty in q(x,y) will be different than that given by Eq. 4.6.  
For extreme examples, consider the case where y = ax (the correlation is rxy = ±1) in the above cases. 

 

SECTION 5:  LINEAR REGRESSION4  
Suppose we have a data set of two variables, {xi,yi}.  Suppose we guess that the variable y depends linearly on the 
variable x.  That is, we hypothesize a mathematical relationship y(x) = mx + b.  This hypothesis comes with a number 
of undetermined parameters.  Our goal is to determine which set of parameters {m̂, b̂} best fit the data and we further 
want a measure of how well our data matches the hypothesized relationship with the best-fit parameters.  If we are 
fitting the data to a line, as we are in this example, then we call the procedure a linear regression. 

 

5.1 - SIMPLE LEAST-SQUARES APPROACH 
Consider a hypothesis y(x;an), where {an} are a set of parameters for the function y(x).  We define a function Q(an) 
that is a cumulative measure of how far off our data points are from a hypothesis with parameters {an}, 

𝑄 𝑎J = 𝑦) − 𝑦 𝑥); 𝑎J
"
. (5.1.1) 

Q(an) is the sum of the squares of the residuals - how far off each yi value is from the predicted value y(xi;an).  The 
best-fit values {ân} are found by minimizing Q(an) simultaneously with respect to all parameters {an}. 

Below, a summary of linear regressions based on a simple least-squares approach for common hypotheses is given. 

 

The Linear Hypothesis, y(x) = mx+b: 

Hypthesis: 𝑦 𝑥;𝑚, 𝑏 = 𝑚𝑥 + 𝑏. (5.1.2) 

Best-fit parameters: 

𝑚 =
𝜎%1
𝜎%%

=
𝑥𝑦 − 𝑥 𝑦
𝑥" − 𝑥 " , (5.1.3a) 

𝑏 = 𝑦 − 𝑚 𝑥 =
𝑥" 𝑦 − 𝑥 𝑥𝑦

𝑥" − 𝑥 " . (5.1.3b) 

                                                
4 For a more thorough discussion see Taylor, An Introduction to Error Analysis, Chapter 8. 
. 
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Uncertainties in y based on fit: 𝛿𝑦 = ,
*3"

𝑦) − 𝑦 𝑥);𝑚, 𝑏
"
.  (5.1.4) 

Uncertainties in best-fit parameters: 

𝛿𝑚 =
𝛿𝑦
𝑁𝜎%%

, (5.1.5a) 

𝛿𝑏 = 𝑥" 𝛿𝑚 = 𝛿𝑦
𝑥"

𝑁𝜎%%
. (5.1.5b) 

 

The Direct Proportionality Hypothesis (Linear Hypothesis through the Origin), y(x) = mx: 

Hypthesis: 𝑦 𝑥;𝑚 = 𝑚𝑥. (5.1.6) 

Best-fit parameters: 𝑚 =
𝑥𝑦
𝑥"

. (5.1.7) 

Uncertainties in y based on fit: 𝛿𝑦 = ,
*3,

𝑦) − 𝑦 𝑥);𝑚
"
.  (5.1.8) 

Uncertainties in best-fit parameters: 𝛿𝑚 =
𝛿𝑦

𝑁 𝑥"
	. (5.1.9) 

 

5.2 - WEIGHTED LEAST-SQUARES APPROACH 
The simple least-squares approach ignored the uncertainties in our data points.  For a linear fit this is a valid approach 
as long as each measured pair {xi,yi} has roughly the same uncertainties {δx,δy}.  When we have differing 
uncertainties we modify our approach.  The first thing we need to do is eliminate the uncertainty in x.  We do this by 
performing a simple least-squares linear regression to find a best-fit slope m̂simple.  Then we exchange the uncertainty 
in x for additional uncertainty in y, 

𝛿𝑦equiv,) = 	 𝛿𝑦)" + 𝑚simple ⋅ 𝛿𝑥)
"
. (5.2.1) 

We want data points with low uncertainty to “matter more” than data points with high uncertainty so we attach a 
weight to each data point, 

𝑤) =
1

𝛿𝑦equiv,)
". (5.2.2) 

This weight gets attached to our Q from earlier, 

𝑄 𝑎J = 𝑤) 𝑦) − 𝑦 𝑥); 𝑎J
"
=

𝑦) − 𝑦 𝑥); 𝑎J
𝛿𝑦equiv,)

"

. (5.2.3) 

 

The Linear Hypothesis, y(x) = mx+b: 

Hypthesis: 𝑦 𝑥;𝑚, 𝑏 = 𝑚𝑥 + 𝑏. (5.2.4) 
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Best-fit parameters: 

𝑚 =
𝑤) 𝑤)𝑥)𝑦) − 𝑤)𝑥) 𝑤)𝑦)
𝑤) 𝑤)𝑥)" − 𝑤)𝑥) " , (5.2.5a) 

𝑏 =
𝑤)𝑥)" 𝑤)𝑦) − 𝑤)𝑥) 𝑤)𝑥)𝑦)

𝑤) 𝑤)𝑥)" − 𝑤)𝑥) " =
𝑤)𝑦) − 𝑚 𝑤)𝑥)

𝑤)
. (5.2.5b) 

Uncertainties in best-fit 
parameters: 

𝛿𝑚 =
𝑤)

𝑤) 𝑤)𝑥)" − 𝑤)𝑥) ", (5.2.6a) 

𝛿𝑏 =
𝑤)𝑥)"

𝑤) 𝑤)𝑥)" − 𝑤)𝑥) ". (5.2.6b) 

 

The Direct Proportionality Hypothesis (Linear Hypothesis through the Origin), y(x) = mx: 

Hypthesis: 𝑦 𝑥;𝑚 = 𝑚𝑥. (5.2.7) 

Best-fit parameters: 𝑚 =
𝑤)𝑥)𝑦)
𝑤)𝑥)"

. (5.2.8) 

Uncertainties in best-fit parameters: 𝛿𝑚 = 	
1

𝑁 − 1
𝑦) − 𝑚𝑥) "

𝑥)"
	. (5.2.9) 

 

Comparisson with Unweighted Least-Squares: 

If all of the weights are identical then the weighted least-squares formulas for Eqs. 5.1.2 through 5.1.9 are identical to 
those in Eqs. 5.2.4 through 5.2.9.  In fact, we can make the formulas in Section 5.1 work for the weighted approach 
by replacing the mean with the weighted mean, 

Weighted Mean: 𝑦 =
𝑤)𝑦)
𝑤)

. (5.2.10) 

Of course we have to be careful to use the weighted means in Eqs. 1.3 and 2.1 when variances occur in the formulas. 

 

5.3 - OTHER HYPOTHESES 
For other functional relationships we can try to “linearize” the problem.  For example, consider a power-law 
hypothesis, y = Axn, where A and n are our two parameters.  To linearlize the problem we define two new variables   
w ≡ ln x and z ≡ ln y.  Taking the logarithm of both sides of y = Axn gives a hypothesis z = nw + (ln A), which is in the 
form of a linear relationship, with {n, ln A} serving as parameters {m, b}.  Take care to propagate uncertainties in 
such a case.  If your uncertainties in y were all comparable they in general won’t be for z and a weighted least-squares 
approach may be called for. 
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5.4 - THE COEFFICIENT OF DETERMINATION AND THE REDUCED CHI-SQUARED TESTS5 
There are many different measures of how “good” a fit matches the data.  The coefficient of determination r2, also 
called the “r-squared value,” is a measure of how much of the variance in the dependent variable y is explained by 
the fit model due to the variance in the independent variable x.  

Coefficient of Determination: 𝑟" = 1 −
𝑦) − 𝑦 𝑥); 𝑎J

"

𝑦)" − 𝑦) " . (5.4.1) 

If a simple least-squares linear regression is used to create the fit model then r2 will always lie between 0 and 1, with 
low values indicating a particularly poor fit and high values a particularly good fit.  Note, however, that r2 can go 
outside of these bounds if a different model.  In particular, in a weighted least-squares linear regression, all sums in 
Eq. 5.4.1 should be replaced by weighted sums in order for r2 to have the same interpretation. 

A flaw in the use of r2 is that the value can be pushed arbitrarily close to 1 with the addition of more independent 
variables.  Therefore we define the adjusted coefficient of determination  𝑟", also called the “r-bar-squared value,”  

Adjusted Coefficient of Determination: 𝑟" = 𝑟" −
𝑝

𝑁 − 𝑝 − 1
	 1 − 𝑟" . (5.4.2) 

The p in this formula is the number of independent variables (p = 1 in all of the regressions considered in this summary 
document).  Note that there are a lot of subtleties in the interpretation of the coefficient of determination.6   

Another commonly used test of “goodness of fit” is the chi-squared value, 

Chi-Squared: 𝜒" =
𝑦) − 𝑦 𝑥); 𝑎J

𝛿𝑦)

"

. (5.4.3) 

Note that the chi-squared value in Eq. 5.4.3 is identical to the Q in Eq. 5.2.3 used in the weighted least-squares 
approach.  Each term in the sum is a ratio of the actual difference between a data point and the fit and a statistically 
expected standard variation of the dependent variable from the expected fit value.  If our data points all lie within the 
naturally expected window of the fit curve then each term in the sum is roughly one or lower.  Data points that lie 
outside the expected variation will contribute terms greater than one.   

To adjust for the number of data points we create the modified or reduced chi-squared value, 

Reduced Chi-Squared: 𝜒" = 𝜒" 𝑑. (5.4.4) 

The quantity d in Eq. 5.4.4 is the number of degrees of freedom for the system, defined as the number of data points 
minus the number of parameters in your fit.  For example, the linear hypothesis fits two parameters so d = N-2 and the 
direct proportionality hypothesis fits one parameter so d = N-1.  A good fit has 𝜒" close to one and a bad fit has 𝜒" 
much greater than one. 

à 
 

 

                                                
5 For a more thorough discussion see Taylor, An Introduction to Error Analysis, Chapter 12. 
6 For a good summary of the interpretation of r2, see http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-
how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit.  


