Problem 1. Let \mathbb{Z}^n be the integer lattice in \mathbb{R}^n . Two points in \mathbb{Z}^n are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers $n \ge 1$ does there exist a set of points $S \subset \mathbb{Z}^n$ satisfying the following two conditions?

- For which integers $n \ge 1$ does there exists a set of points $S \in \mathbb{Z}^{n}$ statisfying the following the
 - 1. If p is in S, then none of the neighbors of p is in S.
 - 2. If $p \in \mathbb{Z}^n$ is not in S, then exactly one of the neighbors of p is in S

Note: This is a hard problem, draw it out, try to figure it out for 2 and 3 dimensions and for the general case, a hint is to use a construction which uses modular arithmetic, the arithmetic of remainders.