SPS Problem of the Week 10/31/2020-11/7/2020

Problem 1. A permutation of the integers $\{1,2, \ldots, n\}$ is a rearrangement of these numbers (or more formally a bijection from the set to itself).
For instance one permutation of $1,2,3$ is:

$$
P:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 3 \\
3 \rightarrow 1
\end{array}\right.
$$

The permutation P^{2} is constructed by applying P on the output of P. Thus in particular,

$$
P^{2}:\left\{\begin{array}{l}
1 \rightarrow 3 \\
2 \rightarrow 1 \\
3 \rightarrow 2
\end{array}\right.
$$

P^{3} is similarly P applied to the output of P^{2} (you can generalise this to P^{k}). In our case it just so happens that:

$$
P^{3}:\left\{\begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 2 \\
3 \rightarrow 3
\end{array}\right.
$$

Which is the same as the original arrangement.
This prompts the very interesting question that if I have any permutation P on the n numbers $\{1,2, \ldots, n\}$, does some power P^{k} of P return the original arrangement?

Hint: This problem is closely related to the fact that if n_{7} denotes the remainder of an integer n when divided by 7 . Then for any number n there is an integer $k<7$ such that $k \cdot n=1_{7}$.

