Problem 1. Take the real plane \mathbb{R}^2 and remove from it a countable number of points $a_1, a_2, a_3... \in \mathbb{R}^2$. Show that given any two points of the remaining plane $\mathbb{R}^2 - \{a_n\}$, they can be connected by a continuous path.

A continuous path between two points a, b of a set M is a function $f : [0,1] \to M$, such that f is continuous and f(0) = a, f(1) = b.

Hint: How many lines pass through a given point of \mathbb{R}^2 ?

Solution: The central idea is that if we show there are an uncountable number of paths with disjoint images (except at the start and the end) then the removal of a countable number of points can only remove a countable number of these paths.

Let the set of lines passing through a point $z \in \mathbb{R}^2$ be S_z . Suppose we are give 2 points x and y in $\mathbb{R}^2 - \{a_n\}$, S_x, S_y are both uncountable.

Given $\{a_n\}$, the set of lines passing through x (or y) which intersected at least one of these points is only a countable subset of S_x (or S_y).

Thus there are an infinite number of lines that pass through x (or y) that do not hit any point of $\{a_n\}$. Pick such a line that passes through x, and another with a different slope at y. These lines are fully in $\mathbb{R}^2 - \{a_n\}$ and must intersect at some point due to unequal slope, the path defined by tracing from x to the intersection to y is one desired path.