SPS Solution of the Week 10/17/2020-10/24/2020

Problem 1. Take the real plane \mathbb{R}^{2} and remove from it a countable number of points $a_{1}, a_{2}, a_{3} \ldots \in \mathbb{R}^{2}$. Show that given any two points of the remaining plane $\mathbb{R}^{2}-\left\{a_{n}\right\}$, they can be connected by a continuous path.

A continuous path between two points a, b of a set M is a function $f:[0,1] \rightarrow M$, such that f is continuous and $f(0)=a, f(1)=b$.

Hint: How many lines pass through a given point of \mathbb{R}^{2} ?

Solution: The central idea is that if we show there are an uncountable number of paths with disjoint images (except at the start and the end) then the removal of a countable number of points can only remove a countable number of these paths.
Let the set of lines passing through a point $z \in \mathbb{R}^{2}$ be S_{z}. Suppose we are give 2 points x and y in $\mathbb{R}^{2}-\left\{a_{n}\right\}$, S_{x}, S_{y} are both uncountable.
Given $\left\{a_{n}\right\}$, the set of lines passing through x (or y) which intersected at least one of these points is only a countable subset of S_{x} (or S_{y}).
Thus there are an infinite number of lines that pass through x (or y) that do not hit any point of $\left\{a_{n}\right\}$.
Pick such a line that passes through x, and another with a different slope at y. These lines are fully in $\mathbb{R}^{2}-\left\{a_{n}\right\}$ and must intersect at some point due to unequal slope, the path defined by tracing from x to the intersection to y is one desired path.

