SPS Problem of the Week 10/17/2020-10/24/2020

Problem 1. Take the real plane \mathbb{R}^{2} and remove from it a countable number of points $a_{1}, a_{2}, a_{3} \ldots \in \mathbb{R}^{2}$. Show that given any two points of the remaining plane $\mathbb{R}^{2}-\left\{a_{n}\right\}$, they can be connected by a continuous path.

A continuous path between two points a, b of a set M is a function $f:[0,1] \rightarrow M$, such that f is continuous and $f(0)=a, f(1)=b$.

Hint: How many lines pass through a given point of \mathbb{R}^{2} ?

